Soutenance de thèse – Daniele Sportillo

Daniele Sportillo a le plaisir de vous inviter à sa soutenance de thèse le vendredi 19 avril 2019 à 13h30. La thèse a été réalisée au Centre de Robotique MINES ParisTech en partenariat avec PSA, sous la direction de Alexis PALJIC (Mines ParisTech) et encadrée par Luciano OJEDA (Groupe PSA). La thèse sera défendue en anglais et s’intitule: « Préparation à la conduite automatisée en Réalité Mixte » (« Get Ready For Automated Driving With Mixed Reality » en anglais).

La soutenance aura lieu en salle L109 à MINES ParisTech, 60 bd Saint Michel 75006.

Jury

– M. Roland BRÉMOND, IFSTTAR (Rapporteur)

– M. Daniel MESTRE, Université Aix-Marseille (Rapporteur)

– M. Frank FLEMISCH, FKIE (Examinateur)

– M. Jean-Marie BURKHARDT, IFSTTAR (Examinateur)

– Mme. Domitile LOURDEAUX, Université de Technologie de Compiègne (Examinateur)

– M. Alexis PALJIC, MINES ParisTech (Examinateur)

– M. Luciano OJEDA, Groupe PSA (Examinateur)

Résumé

L’automatisation de la conduite est un processus en cours qui est en train de changer radicalement la façon dont les gens voyagent et passent du temps dans leur voiture pendant leurs déplacements. Les véhicules conditionnellement automatisés libèrent les conducteurs humains de la surveillance et de la supervision du système et de l’environnement de conduite, leur permettant d’effectuer des activités secondaires pendant la conduite, mais requièrent qu’ils puissent reprendre la tâche de conduite si nécessaire. Pour les conducteurs, il est essentiel de comprendre les capacités et les limites du système, d’en reconnaître les notifications et d’interagir de manière adéquate avec le véhicule pour assurer leur propre sécurité et celle des autres usagers de la route. À cause de la diversité des situations de conduite que le conducteur peut rencontrer, les programmes traditionnels de formation peuvent ne pas être suffisants pour assurer une compréhension efficace de l’interaction entre le conducteur humain et le véhicule pendant les transitions de contrôle. Il est donc nécessaire de permettre aux conducteurs de vivre ces situations avant leur première utilisation du véhicule. Dans ce contexte, la Réalité Mixte constitue un outil d’apprentissage et d’évaluation des compétences potentiellement efficace qui permettrait aux conducteurs de se familiariser avec le véhicule automatisé et d’interagir avec le nouvel équipement dans un environnement sans risque. Si jusqu’à il y a quelques années, les plates-formes de Réalité Mixte étaient destinées à un public de niche, la démocratisation et la diffusion à grande échelle des dispositifs immersifs ont rendu leur adoption plus accessible en termes de coût, de facilité de mise en œuvre et de configuration. L’objectif de cette thèse est d’étudier le rôle de la réalité mixte dans l’acquisition de compétences pour l’interaction d’un conducteur avec un véhicule conditionnellement automatisé. En particulier, nous avons exploré le rôle de l’immersion dans le continuum de la réalité mixte en étudiant différentes combinaisons d’espaces de visualisation et de manipulation et la correspondance entre le monde virtuel et le monde réel. Du fait des contraintes industrielles, nous avons limité les candidats possibles à des systèmes légers portables, peu chers et facilement accessibles; et avons analysé l’impact des incohérences sensorimotrices que ces systèmes peuvent provoquer sur la réalisation des activités dans l’environnement virtuel. À partir de ces analyses, nous avons conçu un programme de formation visant l’acquisition des compétences, des règles et des connaissances nécessaires à l’utilisation d’un véhicule conditionnellement automatisé. Nous avons proposé des scénarios routiers simulés de plus en plus complexes pour permettre aux apprenants d’interagir avec ce type de véhicules dans différentes situations de conduite. Des études expérimentales ont été menées afin de déterminer l’impact de l’immersion sur l’apprentissage, la pertinence du programme de formation conçu et, à plus grande échelle, de valider l’efficacité de l’ensemble des plateformes de formation par des mesures subjectives et objectives. Le transfert de competences de l’environnement de formation à la situation réelle a été évalué par des essais sur simulateurs de conduite haut de gamme et sur des véhicules réels sur la voie publique.

Abstract

Driving automation is an ongoing process that is radically changing how people travel and spend time in their cars during journeys. Conditionally automated vehicles free human drivers from the monitoring and supervision of the system and driving environment, allowing them to perform secondary activities during automated driving, but requiring them to resume the driving task if necessary. For the drivers, understanding the system’s capabilities and limits, recognizing the system’s notifications, and interacting with the vehicle in the appropriate way is crucial to ensuring their own safety and that of other road users. Because of the variety of unfamiliar driving situations that the driver may encounter, traditional handover and training programs may not be sufficient to ensure an effective understanding of the interaction between the human driver and the vehicle during transitions of control. Thus, there is the need to let drivers experience these situations before their first ride. In this context, Mixed Reality provides potentially valuable learning and skill assessment tools which would allow drivers to familiarize themselves with the automated vehicle and interact with the novel equipment involved in a risk-free environment. If until a few years ago these platforms were destined to a niche audience, the democratization and the large-scale spread of immersive devices since then has made their adoption more accessible in terms of cost, ease of implementation, and setup. The objective of this thesis is to investigate the role of Mixed Reality in the acquisition of competences needed for a driver’s interaction with a conditionally automated vehicle. In particular, we explored the role of immersion along the Mixed Reality continuum by investigating different combinations of visualization and manipulation spaces and the correspondence between the virtual and the real world. For industrial constraints, we restricted the possible candidates to light systems that are portable, cost-effective and accessible; we thus analyzed the impact of the sensorimotor incoherences that these systems may cause on the execution of tasks in the virtual environment. Starting from these analyses, we designed a training program aimed at the acquisition of skills, rules and knowledge necessary to operate a conditionally automated vehicle. In addition, we proposed simulated road scenarios with increasing complexity to suggest what it feels like to be a driver at this level of automation in different driving situations. Experimental user studies were conducted in order to determine the impact of immersion on learning and the pertinence of the designed training program and, on a larger scale, to validate the effectiveness of the entire training platform with self-reported and objective measures. Furthermore, the transfer of skills from the training environment to the real situation was assessed with test drives using both high-end driving simulators and actual vehicles on public roads.

Catégorie(s) : Soutenances de thèses et HDR

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *

*


8 − sept =